from math import sqrt, ceil, isqrt
import random
import itertools
fact = (1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880)
def factorial(n): return reduce(lambda x,y:x*y,range(1,n+1),1)
def is_perm(a,b): return sorted(str(a))==sorted(str(b))
def is_palindromic(n): n=str(n); return n==n[::-1]
def is_pandigital(n, s=9): n=str(n); return len(n)==s and not '1234567890'[:s].strip(n)
#--- Calculate the sum of proper divisors for n--------------------------------------------------
def d(n):
s = 1
t = sqrt(n)
for i in range(2, int(t)+1):
if n % i == 0: s += i + n/i
if t == int(t): s -= t #correct s if t is a perfect square
return s
#--- Create a list of all palindromic numbers with k digits--------------------------------------
def pal_list(k):
if k == 1:
return [1, 2, 3, 4, 5, 6, 7, 8, 9]
return [sum([n*(10**i) for i,n in enumerate(([x]+list(ys)+[z]+list(ys)[::-1]+[x]) if k%2
else ([x]+list(ys)+list(ys)[::-1]+[x]))])
for x in range(1,10)
for ys in itertools.product(range(10), repeat=k/2-1)
for z in (range(10) if k%2 else (None,))]
#--- sum of factorial's digits-------------------------------------------------------------------
def sof_digits(n):
if n==0: return 1
s = 0
while n > 0:
s, n = s + fact[n % 10], n // 10
return s
#--- find the nth Fibonacci number---------------------------------------------------------------
def fibonacci(n):
"""
Find the nth number in the Fibonacci series. Example:
>>>fibonacci(100)
354224848179261915075
Algorithm & Python source: Copyright (c) 2013 Nayuki Minase
Fast doubling Fibonacci algorithm
http://nayuki.eigenstate.org/page/fast-fibonacci-algorithms
"""
if n < 0:
raise ValueError("Negative arguments not implemented")
return _fib(n)[0]
# Returns a tuple (F(n), F(n+1))
def _fib(n):
if n == 0:
return (0, 1)
else:
a, b = _fib(n // 2)
c = a * (2 * b - a)
d = b * b + a * a
if n % 2 == 0:
return (c, d)
else:
return (d, c + d)
#--- sum of squares of digits-------------------------------------------------------------------
def sos_digits(n):
s = 0
while n > 0:
s, n = s + (n % 10)**2, n // 10
return s
#--- sum of the digits to a power e-------------------------------------------------------------
def pow_digits(n, e):
s = 0
while n > 0:
s, n = s + (n % 10)**e, n // 10
return s
#--- check n for prime--------------------------------------------------------------------------
def is_prime(n):
if n <= 1: return False
if n <= 3: return True
if n%2==0 or n%3 == 0: return False
r = math.isqrt(n)
f = 5
while f <= r:
if n%f == 0 or n%(f+2) == 0: return False
f+= 6
return True
#--- Miller-Rabin primality test----------------------------------------------------------------
def miller_rabin(n):
"""
Check n for primalty: Example:
>miller_rabin(162259276829213363391578010288127) #Mersenne prime #11
True
Algorithm & Python source:
http://en.literateprograms.org/Miller-Rabin_primality_test_(Python)
"""
d = n - 1
s = 0
while d % 2 == 0:
d >>= 1
s += 1
for repeat in range(20):
a = 0
while a == 0:
a = random.randrange(n)
if not miller_rabin_pass(a, s, d, n):
return False
return True
def miller_rabin_pass(a, s, d, n):
a_to_power = pow(a, d, n)
if a_to_power == 1:
return True
for i in range(s-1):
if a_to_power == n - 1:
return True
a_to_power = (a_to_power * a_to_power) % n
return a_to_power == n - 1
#--- factor a number into primes and frequency----------------------------------------------------
"""
find the prime factors of n along with their frequencies. Example:
>>> factor(786456)
[(2,3), (3,3), (11,1), (331,1)]
Source: Project Euler forums for problem #3
"""
def factor(n):
f, factors, prime_gaps = 1, [], [2, 4, 2, 4, 6, 2, 6, 4]
if n < 1:
return []
while True:
for gap in ([1, 1, 2, 2, 4] if f < 11 else prime_gaps):
f += gap
if f * f > n: # If f > sqrt(n)
if n == 1:
return factors
else:
return factors + [(n, 1)]
if not n % f:
e = 1
n //= f
while not n % f:
n //= f
e += 1
factors.append((f, e))
#--- greatest common divisor----------------------------------------------------------------------
def gcd(a, b):
"""
Compute the greatest common divisor of a and b. Examples:
>>> gcd(14, 15) #co-prime
1
>>> gcd(5*5, 3*5)
5
"""
while b != 0:
(a, b) = (b, a % b)
return a
#--- generate permutations-----------------------------------------------------------------------
def perm(n, s):
"""
requires function factorial()
Find the nth permutation of the string s. Example:
>>>perm(30, 'abcde')
bcade
"""
if len(s)==1: return s
q, r = divmod(n, factorial(len(s)-1))
return s[q] + perm(r, s[:q] + s[q+1:])
#--- binomial coefficients-----------------------------------------------------------------------
def binomial(n, k):
"""
Calculate C(n,k), the number of ways can k be chosen from n. Example:
>>>binomial(30,12)
86493225
"""
nt = 1
for t in range(min(k, n-k)):
nt = nt * (n-t) // (t+1)
return nt
#--- catalan number------------------------------------------------------------------------------
def catalan_number(n):
"""
Calculate the nth Catalan number. Example:
>>>catalan_number(10)
16796
"""
nm = dm = 1
for k in range(2, n+1):
nm, dm = (nm*(n+k), dm*k)
return nm / dm
#--- generate prime numbers----------------------------------------------------------------------
def prime_sieve(n):
"""
Return a list of prime numbers from 2 to a prime < n. Very fast (n<10,000,000) in 0.4 sec.
Example:
>>>prime_sieve(25)
[2, 3, 5, 7, 11, 13, 17, 19, 23]
Algorithm & Python source: Robert William Hanks
http://stackoverflow.com/questions/17773352/python-sieve-prime-numbers
"""
sieve = [True] * (n//2)
for i in range(3, math.isqrt(n)+1, 2):
if sieve[i//2]:
sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]
#--- bezout coefficients--------------------------------------------------------------------------
def bezout(a,b):
"""
Bézout coefficients (u,v) of (a,b) as:
a*u + b*v = gcd(a,b)
Result is the tuple: (u, v, gcd(a,b)). Examples:
>>> bezout(7*3, 15*3)
(-2, 1, 3)
>>> bezout(24157817, 39088169) #sequential Fibonacci numbers
(-14930352, 9227465, 1)
Algorithm source: Pierre L. Douillet
http://www.douillet.info/~douillet/working_papers/bezout/node2.html
"""
u, v, s, t = 1, 0, 0, 1
while b !=0:
q, r = divmod(a,b)
a, b = b, r
u, s = s, u - q*s
v, t = t, v - q*t
return (u, v, a)
#--- number base conversion -------------------------------------------------------------------
#source: http://interactivepython.org/runestone/static/pythonds/Recursion/pythondsConvertinganIntegertoaStringinAnyBase.html
def dec2base(n,base):
convertString = "0123456789ABCDEF"
if n < base:
return convertString[n]
else:
return dec2base(n//base,base) + convertString[n%base]
def is_prime_MR(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d, s = n - 1, 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
x = pow(a, d, n)
if x in (1, n - 1):
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True